List 5

Review for Celebration of Knowledge 1
106. If $\vec{a}=\left[\begin{array}{l}3 \\ 3 \\ 0\end{array}\right]$ and $\vec{b}=[1,0,-1]$ and $\vec{c}=12 \hat{k}$, calculate $\vec{a}+4 \vec{b}-\frac{1}{2} \vec{c}$.
107. Calculate $(9 \hat{\imath}+4 \hat{k}) \cdot(5 \hat{\imath}-\hat{\jmath}+2 \hat{k})$ and $(9 \hat{\imath}+4 \hat{k}) \times(5 \hat{\imath}-\hat{\jmath}+2 \hat{k})$.
108. Setup Picture $1 \quad$ Picture $2 \quad$ Picture $3 \quad$ Picture $4 \quad$ Picture 5

Which picture shows $\vec{a}+\vec{b}$? Which shows $\vec{a}-\vec{b}$?
109. Find the cosine of the angle between $10 \hat{\imath}+\hat{\jmath}$ and $\hat{\imath}+10 \hat{\jmath}$.
 $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$, find the angle between \vec{a} and \vec{c}.
111. Which picture(s) below have $\vec{u} \cdot \vec{v}=0$? Which have $\vec{u} \cdot \vec{v}>0$?

(a)

(b)

(c)

(d)

(e)

2 112. If $A=(0,0)$ and $B=(4,3)$, find all possible positions for the point C such that $A B C$ is a right isosceles triangle (that is, two of its sides have the same length).
113. Write $18 \hat{\imath}+\hat{\jmath}$ as a linear combination of $\vec{v}=\hat{\imath}+2 \hat{\jmath}$ and $\vec{w}=2 \hat{\imath}-3 \hat{\jmath}$.
114. Write $\left[\begin{array}{c}-20 \\ 12 \\ -32\end{array}\right]$ as a linear combination of $\vec{a}=\left[\begin{array}{c}15 \\ -9 \\ 24\end{array}\right]$ and $\vec{b}=\left[\begin{array}{c}10 \\ 12 \\ -8\end{array}\right]$.
115. Write $\left[\begin{array}{c}17 \\ -13 \\ 63\end{array}\right]$ as a linear combination of $\vec{u}=\left[\begin{array}{c}9 \\ 1 \\ 25\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}3 \\ 1 \\ 5\end{array}\right]$ and $\vec{w}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
116. Are the vectors ${ }^{1}\left[\begin{array}{l}5 \\ 2\end{array}\right]$ and $\left[\begin{array}{c}10 \\ -4\end{array}\right]$ linear dependent or linear independent?

[^0]117. Are the vectors $\left[\begin{array}{l}5 \\ 2\end{array}\right],\left[\begin{array}{c}10 \\ -4\end{array}\right],\left[\begin{array}{l}7 \\ 3\end{array}\right]$ linear dependent or linear independent?
118. Determine whether each of the following collections of vectors are linear independent or linearly dependent:
(a) $\{[6,2]\}$
(d) $\{[6,2], \quad[3,1]\}$
(b) $\{[6,2], \quad[3,0]\}$
(e) $\{[6,2], \quad[3,1], \quad[0,1]\}$
(c) $\{[6,2], \quad[3,0]$
$[0,1]\}$
(f) $\{[6,2], \quad[3,1], \quad[9,3]\}$

نح 119. If $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly independent, determine whether each of the following collections of vectors are linear independent or linearly dependent:
(a) $\{\vec{u}, \vec{v}\}$
(b) $\{\vec{u}, \vec{v}, \vec{u}+\vec{v}\}$
(c) $\{\vec{u}, \vec{v}, \vec{u}+\vec{w}\}$
(d) $\{\vec{u}, \vec{v}, 3 \vec{w}\}$
120. Which of the following lines is parallel to the line $\left\{\begin{array}{l}x=9+8 t \\ y=11-6 t \\ z=1+10 t\end{array}\right.$?
(A) $\left\{\begin{array}{l}x=1+4 t \\ y=-7-3 t \\ z=2+5 t\end{array}\right.$
(B) $\left\{\begin{array}{l}x=7+8 t \\ y=12-4 t \\ z=4 t\end{array}\right.$
(C) $\left\{\begin{array}{l}x=2-4 t \\ y=6-3 t \\ z=4+5 t\end{array}\right.$
(D) $\left\{\begin{array}{l}x=8+9 t \\ y=-6+11 t \\ z=10+t\end{array}\right.$
121. Which line from Task 120 is parallel to the plane

$$
4(x-7)-2(y-9)+2(z+3)=0 ?
$$

122. Which line from Task 120 is perpendicular to the plane from Task 121 ?
123. Find the intersection of the line $\left\{\begin{array}{l}x=1+t \\ y=2-2 t \\ z=8-5 t\end{array}\right.$ and the plane $8 x+2 y-z=10$.
124. (a) Find the intersection of the lines

$$
\begin{array}{llll}
L_{1}: & x=1+9 t, & y=13, & z=7+4 t \\
L_{2}: & x=3+5 s, & y=18-s, & z=9+2 s .
\end{array}
$$

(b) Find a vector that is perpendicular to both lines.
(c) Give an equation for the plane that contains L_{1} and L_{2}.
125. What are the dimensions of $\left[\begin{array}{ll}7 & \frac{1}{10}\end{array}\right]\left[\begin{array}{cc}\frac{1}{3} & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{ccc}6 & -33 & 2 \\ 0 & 0 & 0\end{array}\right]$?
126. Calculate the product in Task 125.
127. If $A=\left[\begin{array}{ccccc}4 & 0 & 0 & -2 & -6 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 3 & 0 & 19 & -8\end{array}\right] B$, and matrix A is invertible, what are the dimensions of matrix A and the dimension of matrix B ?
128. Multiply the following matrices, or state that the product does not exist.
(a) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ccc}5 & 6 & 7 \\ 8 & 9 & 10\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}5 & -1 \\ 1 & 1\end{array}\right]$
(f) $\left[\begin{array}{lll}1 & 0 & 2 \\ 5 & 0 & 5\end{array}\right]\left[\begin{array}{ccc}4 & 2 & 0 \\ 0 & 2 & 4 \\ 1 & -1 & 3\end{array}\right]$
(b) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{cc}5 & 6 \\ 7 & 8 \\ 9 & 10\end{array}\right]$
(d) $\left[\begin{array}{cc}5 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$
(e) $\left[\begin{array}{lll}1 & 0 & 2 \\ 5 & 0 & 5\end{array}\right]\left[\begin{array}{lll}1 & 0 & 2 \\ 5 & 0 & 5\end{array}\right]$
(g) $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]\left[\begin{array}{ccc}15 & 8 & -2 \\ 3 & 5 & 1 \\ 9 & 9 & 2\end{array}\right]$
129. Which of the following are linear transformations?
(a) $f(x, y)=(x+10, y)$
(b) $f(x, y)=(10 x, y)$
(c) $f(x, y)=(x+2 y, x-2 y)$
(d) $f(x, y)=(x+2 y, y-2 x)$
(e) $f(x, y)=\left(100 x^{2}, y\right)$
130. If $f(x, y)=(x+y, 0)$ and $g(x, y)=(5 x-y, x+y)$, give a formula for $f(g(x, y))$ and a formula for $g(f(x, y))$.
131. Calculate the determinant and the inverse of $\left[\begin{array}{ll}5 & 1 \\ 8 & 2\end{array}\right]$.
132. Calculate the determinant of $\left[\begin{array}{ccc}11 & 10 & 7 \\ 1 & 0 & 0 \\ 11 & 18 & 15\end{array}\right]$.
133. If A is a 6×6 matrix with $\operatorname{det}(A)=5$, and B is a 6×2 matrix, which of the following exist?
(a) $2 A+B$
(d) $B A$
(g) $I_{6 \times 6} A$
(j) B^{-1}
(b) $3 B+A$
(e) $I_{6 \times 6}+A$
(h) $I_{6 \times 6} B$
(k) $A^{-1}+B^{-1}$
(c) $A B$
(f) $I_{6 \times 6}+B$
(i) A^{-1}
(ℓ) $A^{-1} B$
134. Solve the following systems of equations, if they have solutions.
(a) $\left\{\begin{array}{l}x+8 y=9 \\ x-12 y=-1\end{array}\right.$
(b) $\left\{\begin{array}{l}10 x-4 y=5 \\ 5 x-2 y=10\end{array}\right.$
$z(c)\left\{\begin{array}{l}10 x-4 y=10 \\ 5 x-2 y=5\end{array}\right.$
135. Calculate the rank of $\left[\begin{array}{ll}6 & 2 \\ 3 & 0 \\ 0 & 1\end{array}\right]$ and the rank of $\left[\begin{array}{ll}6 & 2 \\ 3 & 1 \\ 9 & 3\end{array}\right]$.
136. Calculate the rank of $\left[\begin{array}{lll}6 & 3 & 0 \\ 2 & 0 & 1\end{array}\right]$ and the rank of $\left[\begin{array}{lll}6 & 3 & 9 \\ 2 & 1 & 3\end{array}\right]$.
137. The determinant of $\left[\begin{array}{cccc}-4 & 19 & -10 & 6 \\ -10 & 19 & 19 & -5 \\ 10 & 10 & 8 & -5 \\ 2 & 7 & -12 & 5\end{array}\right]$ is 36 . What is its rank?

[^0]: ${ }^{1}$ Technically, this should ask whether the collection (or set) of vectors $\{[5,2],[10,-4]\}$ is a linearly dependent collection or a linearly independent collection. But it is common to say that " \vec{u} and \vec{v} are linearly (in)dependent" when the set $\{\vec{u}, \vec{v}\}$ is linearly (in)dependent.

