

Linear Algebra, Winter 2022 List 5 Review for Celebration of Knowledge 1



Which picture shows  $\vec{a} + \vec{b}$ ? Which shows  $\vec{a} - \vec{b}$ ?

- 109. Find the cosine of the angle between  $10\hat{i} + \hat{j}$  and  $\hat{i} + 10\hat{j}$ .
- $\stackrel{\text{tr}}{\approx} 110$ . If  $\vec{a}$  and  $\vec{b}$  point in the same direction,  $4\vec{c}$  and  $8\vec{b}$  have the same length, and  $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$ , find the angle between  $\vec{a}$  and  $\vec{c}$ .
  - 111. Which picture(s) below have  $\vec{u} \cdot \vec{v} = 0$ ? Which have  $\vec{u} \cdot \vec{v} > 0$ ?



 $\gtrsim 112$ . If A = (0,0) and B = (4,3), find all possible positions for the point C such that ABC is a right isosceles triangle (that is, two of its sides have the same length).

113. Write  $18\hat{i} + \hat{j}$  as a linear combination of  $\vec{v} = \hat{i} + 2\hat{j}$  and  $\vec{w} = 2\hat{i} - 3\hat{j}$ .

114. Write 
$$\begin{bmatrix} -20\\12\\-32 \end{bmatrix}$$
 as a linear combination of  $\vec{a} = \begin{bmatrix} 15\\-9\\24 \end{bmatrix}$  and  $\vec{b} = \begin{bmatrix} 10\\12\\-8 \end{bmatrix}$ .  
115. Write  $\begin{bmatrix} 17\\-13\\63 \end{bmatrix}$  as a linear combination of  $\vec{u} = \begin{bmatrix} 9\\1\\25 \end{bmatrix}$  and  $\vec{v} = \begin{bmatrix} 3\\1\\5 \end{bmatrix}$  and  $\vec{w} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$ .

116. Are the vectors<sup>1</sup>  $\begin{bmatrix} 5\\2 \end{bmatrix}$  and  $\begin{bmatrix} 10\\-4 \end{bmatrix}$  linear dependent or linear independent?

<sup>&</sup>lt;sup>1</sup>Technically, this should ask whether the *collection* (or *set*) of vectors  $\{[5,2], [10,-4]\}$  is a linearly dependent collection or a linearly independent collection. But it is common to say that " $\vec{u}$  and  $\vec{v}$  are linearly (in)dependent" when the set  $\{\vec{u}, \vec{v}\}$  is linearly (in)dependent.

117. Are the vectors  $\begin{bmatrix} 5\\2 \end{bmatrix}$ ,  $\begin{bmatrix} 10\\-4 \end{bmatrix}$ ,  $\begin{bmatrix} 7\\3 \end{bmatrix}$  linear dependent or linear independent?

118. Determine whether each of the following collections of vectors are linear independent or linearly dependent:

| (a) $\{[6,2]\}$ |               |           | (d) | $\{[6,2],$ | [3,1]   |               |
|-----------------|---------------|-----------|-----|------------|---------|---------------|
| (b) $\{[6,2],$  | $[3,0]\big\}$ |           | (e) | $\{[6,2],$ | [3, 1], | $[0,1]\big\}$ |
| (c) $\{[6,2],$  | [3,0], [      | $[0,1]\}$ | (f) | $\{[6,2],$ | [3, 1], | [9,3]         |

 $\approx 119$ . If  $\{\vec{u}, \vec{v}, \vec{w}\}$  is linearly independent, determine whether each of the following collections of vectors are linear independent or linearly dependent:

(a)  $\{\vec{u}, \vec{v}\}$  (b)  $\{\vec{u}, \vec{v}, \vec{u}+\vec{v}\}$  (c)  $\{\vec{u}, \vec{v}, \vec{u}+\vec{w}\}$  (d)  $\{\vec{u}, \vec{v}, 3\vec{w}\}$ 

120. Which of the following lines is parallel to the line  $\begin{cases} x = 9 + 8t \\ y = 11 - 6t ? \\ z = 1 + 10t \end{cases}$ 

(A) 
$$\begin{cases} x = 1 + 4t \\ y = -7 - 3t \\ z = 2 + 5t \end{cases}$$
 (B) 
$$\begin{cases} x = 7 + 8t \\ y = 12 - 4t \\ z = 4t \end{cases}$$
 (C) 
$$\begin{cases} x = 2 - 4t \\ y = 6 - 3t \\ z = 4 + 5t \end{cases}$$
 (D) 
$$\begin{cases} x = 8 + 9t \\ y = -6 + 11t \\ z = 10 + t \end{cases}$$

121. Which line from Task 120 is *parallel* to the plane

$$4(x-7) - 2(y-9) + 2(z+3) = 0?$$

122. Which line from Task 120 is *perpendicular* to the plane from Task 121?

123. Find the intersection of the line  $\begin{cases} x = 1 + t \\ y = 2 - 2t \\ z = 8 - 5t \end{cases}$  and the plane 8x + 2y - z = 10.

124. (a) Find the intersection of the lines

$$L_1:$$
  $x = 1 + 9t,$   $y = 13,$   $z = 7 + 4t$   
 $L_2:$   $x = 3 + 5s,$   $y = 18 - s,$   $z = 9 + 2s.$ 

(b) Find a vector that is perpendicular to both lines.

(c) Give an equation for the plane that contains  $L_1$  and  $L_2$ .

125. What are the dimensions of  $\begin{bmatrix} 7 & \frac{1}{10} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 6 & -33 & 2 \\ 0 & 0 & 0 \end{bmatrix}$ ?

126. Calculate the product in Task 125.

127. If  $A = \begin{bmatrix} 4 & 0 & 0 & -2 & -6 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 3 & 0 & 19 & -8 \end{bmatrix} B$ , and matrix A is invertible, what are the dimensions of matrix A and the dimension of matrix B?

128. Multiply the following matrices, or state that the product does not exist.

$$(a) \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix}$$

$$(b) \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 7 & 8 \\ 9 & 10 \end{bmatrix}$$

$$(c) \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 5 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 5 & -1 \\ 1 & 1 \end{bmatrix}$$

$$(c) \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

$$(c) \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

$$(c) \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

$$(c) \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

$$(c) \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 5 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

$$(c) \begin{bmatrix} 1 & 0 & 2 \\ 5 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 5 & 0 & 5 \end{bmatrix}$$

$$(c) \begin{bmatrix} 1 & 0 & 2 \\ 5 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 5 & 0 & 5 \end{bmatrix}$$

$$(c) \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 15 & 8 & -2 \\ 3 & 5 & 1 \\ 9 & 9 & 2 \end{bmatrix}$$

129. Which of the following are linear transformations?

- (a) f(x,y) = (x+10,y)
- (b) f(x,y) = (10x,y)
- (c) f(x,y) = (x+2y, x-2y)
- (d) f(x,y) = (x+2y, y-2x)
- (e)  $f(x,y) = (100x^2, y)$
- 130. If f(x,y) = (x+y,0) and g(x,y) = (5x-y,x+y), give a formula for f(g(x,y)) and a formula for g(f(x,y)).

131. Calculate the determinant and the inverse of  $\begin{bmatrix} 5 & 1 \\ 8 & 2 \end{bmatrix}$ .

- 132. Calculate the determinant of  $\begin{bmatrix} 11 & 10 & 7 \\ 1 & 0 & 0 \\ 11 & 18 & 15 \end{bmatrix}$ .
- 133. If A is a  $6 \times 6$  matrix with det(A) = 5, and B is a  $6 \times 2$  matrix, which of the following exist?

(a) 
$$2A + B$$
 (d)  $BA$ 
 (g)  $I_{6\times 6}A$ 
 (j)  $B^{-1}$ 

 (b)  $3B + A$ 
 (e)  $I_{6\times 6} + A$ 
 (h)  $I_{6\times 6}B$ 
 (k)  $A^{-1} + B^{-1}$ 

 (c)  $AB$ 
 (f)  $I_{6\times 6} + B$ 
 (i)  $A^{-1}$ 
 (l)  $A^{-1}B$ 

134. Solve the following systems of equations, if they have solutions.

(a) 
$$\begin{cases} x + 8y = 9\\ x - 12y = -1 \end{cases}$$
 (b) 
$$\begin{cases} 10x - 4y = 5\\ 5x - 2y = 10 \end{cases}$$
  $\thickapprox$  (c) 
$$\begin{cases} 10x - 4y = 10\\ 5x - 2y = 5 \end{cases}$$
  
135. Calculate the rank of 
$$\begin{bmatrix} 6 & 2\\ 3 & 0\\ 0 & 1 \end{bmatrix}$$
 and the rank of 
$$\begin{bmatrix} 6 & 2\\ 3 & 1\\ 9 & 3 \end{bmatrix}$$
.  
136. Calculate the rank of 
$$\begin{bmatrix} 6 & 3 & 0\\ 2 & 0 & 1 \end{bmatrix}$$
 and the rank of 
$$\begin{bmatrix} 6 & 3 & 9\\ 2 & 1 & 3 \end{bmatrix}$$
.  
137. The determinant of 
$$\begin{bmatrix} -4 & 19 & -10 & 6\\ -10 & 19 & 19 & -5\\ 10 & 10 & 8 & -5\\ 2 & 7 & -12 & 5 \end{bmatrix}$$
 is 36. What is its rank?